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The generation and evolution of two-dimensional bores in water of uniform depth and
on sloping beaches are simulated through numerical solution of the Euler equations
using the smoothed particle hydrodynamics (SPH) method, wherein particles are
followed in Lagrangian fashion, avoiding the need for computational grids. In water of
uniform depth, a piston wavemaker produces cyclically breaking bores in the Froude
number range 1.37–1.82, which were shown to move at time-averaged speeds in very
good agreement with the requirements of global mass and momentum conservation.
A single Strouhal number for the breaking period was discovered. Complex repetitive
splashing patterns are observed and described, involving forward jet formation growth,
impact and ricochet, and similarly, backward jet formation and impact. Observed
consequences were the creation of vortical regions of both signs, dipole creation
through pairing, large-scale transport of surface water downward and high tangential
scouring velocities on the bed, which are quantified. These bores are further allowed to
rise on linear slopes to the shoreline, where they are seen to collapse into a tongue-like
flow resembling dam-break evolution.

This essentially inviscid calculation is able to reproduce the development of a highly
vortical flow in excellent agreement with experimental observations and theoretical
concepts. The turbulent flow behaviour is partially described by the numerical
solution.

1. Introduction
The reflection of the energy of waves progressing onto the coastal slope is generally

weak, long wind waves and swell approaching the shoreline are commonly observed
to break offshore and near the shoreline, and thereby dissipate their energy, leading to
bottom and shore erosion and to transport of sediment. These breakers can develop
as plunging breakers or can occur as quasi-steady spilling breakers or bores (see
Peregrine 1983). The practical consequences of near-shore bore phenomena motivated
an increasing research effort in this field. Semi-analytical theories of quasi-steady
breakers have been developed for bores (Svendsen, Madsen & Hansen 1978) and for
deep-water spilling breakers (Cointe & Tulin 1994); useful information has also been
obtained from experimental observations, for example by Lin & Hwung (1992). Great
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advances have been made in the consideration of water-wave propagation by using
boundary-element methods up through the formation of a plunging breaker, both in
deep water (Dold & Peregrine 1986; Wang, Yao, & Tulin 1995) and in shallow water
and on beaches (Grilli, Svendsen & Subramanya 1997). However, better computer
programs, which include the nonlinearity of the Euler equations and can handle the
post-breaking evolution, are required.

The numerical simulation of breaking waves has challenged several authors, and
here we present our contribution in this direction. We discuss results for bores
propagating in water with uniform depth and rising beaches with constant slope.

Breaking bores involve energetic splashing processes and generally a complex fluid
dynamics. This is why they are largely discussed only in the experimental literature.
In the observed pre-breaking evolution, waves steepen, become asymmetric, and
eventually overturn in the form of a forward-plunging jet hitting the free surface.
This leads to the formation of a first cavity with large circulation entrapping air
(Peregrine 1983). From the plunge point on and within the outer-surf region, creation
of coherent and repeatable vortical structures is observed (cf. Svendsen et al. 1978).
These vortical structures have a topological origin, that is the fluid viscosity is not
involved in their formation (Battjes 1988). However, as time goes on, viscosity tends
to dissipate the vorticity according to the features involved (i.e. strength and curvature
of the vorticity).

The impact of the jet causes the water to splash up cyclically, as observed by Miller
(1976), though usually with decreasing strength. The vortical structures (or vortex
patches) are made in pairs; one patch rotating clockwise, the other counterclockwise.
Usually, the splashing-up water is seen to curl forward, originating a series of co-
rotating vortices. In deep-water conditions, Bonmarin (1989) documented that the
splash-up also evolved into a backward-facing plunging jet, and then into a counter-
rotating vortical structure. Consistent observations in finite water depth have been
reported in Jansen (1986) and in Lin & Hwung (1992).

Most of the numerical investigations on breaking waves and subsequent post-
breaking evolutions have been performed through field solvers using fixed grids.
The free-surface motion is often tracked by marker-and-cell (MAC), volume-of-fluid
(VOF) and, more recently, level-set methods. The solutions presented are for two-
dimensional problems, with or without the periodicity constraint. A detailed review
of such methods for wave hydrodynamics can be found, for instance, in Lin & Liu
(1999).

Within the one-fluid (liquid) approaches, the influence of different schemes to
discretize the field equations has been examined by Lemos (1996) who studied undular
non-breaking bores and the initial evolution of a breaking bore and documented
different solutions using different solvers.

Within the two-fluid (liquid and gas) methods, Abadie, Caltagirone & Watremez
(1998) applied a VOF technique to analyse the breaking of a large Stokes wave in
a periodic domain. The fluid motion associated with the splash-up was tracked by
passive Lagrangian markers distributed in a subdomain. For similar initial conditions,
Chen et al. (1999) studied the breaking using gas and liquid phases with different
properties from those of air and water. Surface-tension effects in the pre-breaking
regime have been discussed. Finally, consistently with the physical observations by
Bonmarin (1989), two different modes were associated with the splash-up.

The turbulent features of the flow in the surf zone have been numerically discussed
by Lin & Liu (1998), Bradford (2000) and Christensen & Deigaard (2001). Finite-
difference techniques were applied using VOF in the first two works, and MAC
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in the last one, to track regular waves approaching a sloping beach. In the
first two papers, a k–ε model has been adopted with different turbulent closure
schemes. Details of the breaking kinematics are not discussed because of the limited
numerical resolution, but good agreement with measured mean quantities is reported.
Christensen & Deigaard adopted a large eddy simulation (LES) approach assuming
the free surface uniform alongshore, but describing the flow underneath as three-
dimensional.

The method adopted in the present paper largely differs from the previously
mentioned approaches. It is based on a Lagrangian meshless method called smoothed
particle hydrodynamics (SPH) particularly suitable for handling free-surface breaking
and fragmentation (see e.g. Monaghan 1994, 2005; Monaghan & Kos 2000). Within
the SPH algorithm, the fluid is decomposed into a large number of particles, each
carrying physical primitive information (density and velocity), and interacting with
neighbouring particles according to evolution equations which follow from discretizing
the field equations. The particles are moved according to the local fluid velocity,
which results in a Lagrangian method featuring an intrinsic tracking of the free
surface and self-adaptivity to its large deformations. In the weakly compressible
version here implemented, the method is fully explicit and does not require matrix
inversions, giving a good computational efficiency and low memory requirements.
The method, originally introduced by Gingold & Monaghan (1977) and Lucy (1977)
has been greatly enhanced in terms of accuracy and stability properties and widened
in applications in the last three decades, mainly by Monaghan and his co-authors
(Monaghan 2005). Several theoretical studies have become available for examining on
a rigorous basis the properties of the method (Raviart 1985; Mas-Gallic & Raviart
1987; Di Lisio, Grenier & Pulvirenti 1998; Moussa & Vila 2000). In particular,
Mas-Gallic & Raviart (1987) have shown that the SPH interpolation (see § 2) is
convergent to the second order inside the domain, when the discretization is not
introduced. The convergence of present simulations has been checked heuristically
as described in Colagrossi & Landrini (2003) and in Le Touzé & Colagrossi (2005).
First, SPH applications to free-surface flows have been proposed by Monaghan
(1994). More recently, the method has been successfully applied to marine and coastal
hydrodynamic problems, such as the breaking of a dam (Colicchio et al. 2002), long-
time sloshing evolutions in closed water tanks (Landrini, Colagrossi & Faltinsen
2003), and breaking waves on sloping beaches without (Monaghan & Kos 1999) and
with a body (Monaghan, Kos & Issa 2003). Applications to finite-(low-) Reynolds-
number flows were presented in Takeda, Miyama & Sekiya (1994) and in Morris,
Fox & Zhu (1997). Applications to turbulent compressible flows have been shown in
Welton & Pope (1997). Bicknell (1991) noticed the formal correspondence between the
filtering approach, forming the mathematical basis of the large-eddy simulation, and
the smoothing integral (cf. Eq. (2.1)) used to derive the SPH equations, and pointed
out the need for additional terms in the SPH equations to model the unresolved scales.
Here, the Euler-based SPH model described in Colagrossi & Landrini (2003) has been
adopted. Accuracy improvements with respect to the standard SPH method have been
achieved through a periodic re-initialization of the density field and the use of a ‘ghost
particles’ technique to model solid boundaries. As in the breaking-bore problem, the
fluid viscosity plays a limited role during the generation of the vortical wake, the
Euler equation is expected to provide a valuable description of this type of flow. When
the viscous effects become relevant, the method may still describe the development of
vortical structures and the fragmentation of the free surface during the multiple splash
process.
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Figure 1. (a) Typical distribution of particles, �, in a free-surface flow. In the enlarged detail,
the circle represents the radius of interaction of a generic particle. (b) Schematic view of the
kernel Wε centred on the position x�.

In the modelling, we will consider only two-dimensional problems whereas the long-
time evolution of vortical structures is strongly three-dimensional. A two-dimensional
investigation enables us to characterize qualitatively the main features of the breaking
and post-breaking evolution and allows us to identify more easily the relevant
parameters involved. Further, it leads to a substantial reduction of the CPU-time
costs with respect to a three-dimensional simulation. This is crucial when long-time
investigations are of interest, as in the present case. However, there are no limits for
an extension of the SPH method to treat three-dimensional flows, as demonstrated in
Le Touzé & Colagrossi (2005).

Finally, the dynamic action of the entrapped air and the surface tension are not
considered. The former approximation is stringent from a quantitative view point;
experiments (Lamarre & Melville 1991) have documented the large role of the
entrapped air in the dynamics of breaking. The presence of the air will mainly affect
the persistence of the vortical structures near the free surface, owing to the involved
buoyancy, and introduce a high-frequency oscillating behaviour of the local pressure
field. However, the focus of this paper is to identify the main mechanisms involved
in the post-breaking evolution and to discuss their influence in terms of links and
correlations with the flow features.

Surface tension has a large effect on the foam and white water generated by break-
ing, but not on the large-scale dynamic processes, so that its neglect is not felt to be
serious.

2. Numerical modelling
The main features of SPH method adopted for the present investigation are given

in the following; a more detailed description can be found in Colagrossi & Landrini
(2003).

Consider a set of N particles distributed over the bulk of fluid Ω , as in the example
in figure 1(a). Each particle is associated with a kernel (or smoothing) function Wε (see
§ 2.1). Each particle moves in the force field generated by the entire particle system and
the physical fluid properties evolve according to suitable evolution laws. Conservation
of mass is intrinsically assured since each particle has a constant mass all along the
simulation. Density variations, however, result from changes in the average spacing
among the particles, as reflected by dρi/dt in equation (2.5a), given later in the text.

The essential features of the resulting algorithm are the complete absence of a
computational grid and a fully Lagrangian character (for a discussion of gridless
methods see e.g. Belytschko et al. 1996; Fries & Matthies 2004).



Gridless simulations of splashing processes and near-shore bore propagation 187

2.1. SPH integral interpolation

In meshless methods, the field of a generic quantity f is represented through
convolution integrals over the entire fluid domain Ω . A regularized (smoothed)
representation of f at the position x is given by the interpolation integral

〈f (x)〉 =

∫
Ω

f (x�) Wε(x − x�) dV �, (2.1)

over the whole fluid domain Ω . For an efficient solution algorithm, the influence
domain Ωx� of the kernel function Wε , must be bounded (Ωx� ⊂ Ω , as shown in
figure 1b). In Wε , the parameter ε measures the extension of Ωx� . Wε is symmetric,
regular, non-negative, centred in x� and decreases monotonically with ‖ x − x�‖ to
reach zero at the border of the support Ωx� . Its integral on this support is unitary.
When Ωx� intersects the boundary ∂Ω of the fluid domain, the amplitude of the kernel
is suitably modified so that its integral is unitary on Ωx� ∩ Ω (see e.g. Belytschko
et al. 1996). When taking the limit ε → 0, Wε becomes a Dirac delta function and
〈f 〉 coincides exactly with f . The error made in approximating f by its smoothed
estimate 〈f 〉 can be determined by expanding the integrand of representation (2.1)
as a power series in ε. Thus, at the continuous level, the approximation inside the
domain results (Mas-Gallic & Raviart 1987),

〈f 〉 = f + O(ε2). (2.2)

However, after the discretization has been introduced, the convergence property does
not remain as favourable (see Colagrossi 2005).

The choice of the kernel influences significantly the stability properties of any
meshless method (see e.g. Morris 1996). In our computations, three different kernel
functions have been investigated: third- and fifth-order splines and a renormalized
Gaussian curve. The comparison showed that the last kernel leads to the best stability
properties (Morris 1996) and to the largest code efficiency (Colagrossi 2005); moreover,
its derivatives can be straightforwardly obtained from the evaluation of the function
itself. For these reasons, the renormalized Gaussian kernel has been selected for the
present investigation. The corresponding curve is

Wε(x� − x) =
exp (−(s/ε)2) − exp (−(δ/ε)2)

2π

∫ δ

0

s(exp (−(s/ε)2) − exp (−(δ/ε)2)) ds

, (2.3)

where s = ‖ x� − x‖. To make its support compact, a cutoff radius δ is introduced,
typically set equal to 3ε, which corresponds to the same radius as for the classical
fifth-order B-spline support (see Monaghan 1992). Obviously, function (2.3) satisfies
all the required kernel properties, i.e. symmetry, unit integral over the support, etc.

The SPH formalism (2.1) is mainly used to recover the gradient of a generic field
f from its values in the domain. The interpolated gradient of f can be obtained as

〈∇f 〉(x) =

∫
Ω

∇�f (x�) Wε(x − x�) dV �

= −
∫

(Ω∩Ωx�)

f (x�) ∇�Wε(x − x�) dV �

+

∫
∂(Ω∩Ωx�)

f (x�) Wε(x − x�) nS� dS�, (2.4)
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in which an integration by parts has been used. In expression (2.4), nS� is a unitary
vector normal to ∂(Ω ∩ Ωx�) and pointing outside Ω ∩ Ωx�; further, the surface terms
are null when ∂Ωx� is inside the domain Ω , being Wε(x − x�) zero on ∂Ωx� . However,
when Ωx� ∩∂Ω 	= 0 the surface term is not null and can be used to enforce the proper
boundary conditions of the problem.

2.2. SPH enforcement of the free-surface and solid boundary conditions

The free-surface boundary conditions can be handled easily by the SPH method.
Owing to the Lagrangian character of the solver, the kinematic condition is
intrinsically satisfied while the dynamic condition must be enforced. Within the
SPH solution algorithm, the pressure is explicitly required only for the evaluation
of ∇p through the interpolation formula (2.4), so the value of the external pressure
pe acting along the free surface can be enforced through the corresponding surface
integral term. Here pe is set to zero, leading to a null free-surface integral term.
In general, the modelling of solid boundaries represents a challenge for the SPH
methods. The classical techniques use either repellent forces acting along the boundary,
or materialize the wall as fixed particles with adequate physical properties (see e.g.
Monaghan 2005). Here a ‘ghost particles’ technique has been employed, which consists
in locally mirroring with respect to the solid boundary the fluid layer (and related
physical properties) at a distance of less than 3ε from the wall. The mirroring leads
to an exact free-slip condition on the boundary (see Colagrossi & Landrini 2003)
and implies an extension of the calculation domain outside the physical fluid domain
Ω . The latter means that also the solid-boundary integral term in expression (2.4) is
avoided. The ghost particles approach is more efficient (Monaghan 2005) and handles
more accurately the pressure along the wall (Colagrossi & Landrini 2003). This
technique has been implemented to model correctly piece-wise straight boundaries.
Its extension to more general body shapes is at present under investigation.

2.3. Basic SPH equations

Upon inserting the discrete form of formula (2.4) into the Euler equations, after some
manipulation (see e.g. Colagrossi & Landrini 2003), the following evolution equations
for the density ρi , the velocity vi and the position xi of the ith particle are obtained:

dρi

dt
= −ρi

N∑
j=1

(vj − vi) · ∇iWε(xi − xj ) dVj , (2.5a)

dvi

dt
= − 1

ρi

N∑
j=1

(pi + pj )∇i Wε(xi − xj ) dVj + g, (2.5b)

dxi

dt
= vi . (2.5c)

Here the subscripts indicate the fluid particles involved and dmj is the constant mass
carried by the j th particle so that the particle volume results, dVj = dmj/ρj . We note
that the structure of the discretized momentum equation is symmetric and ensures
linear- and angular-momentum conservation (Bonet & Lok 1999).

The fluid is modelled as a (weakly) compressible fluid with a state equation of the
form

p =
ρ0c

2
0

γ

[(
ρ

ρ0

)γ

− 1

]
, (2.6)
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with γ = 7 and c0 the speed of sound for ρ = ρ0. To remain in the weak compressible
regime, the speed of sound c =

√
dp/dρ must be at least one order of magnitude

greater than the maximum flow velocity, in the whole domain Ω and during the
entire simulation (Monaghan 1992; Molteni, Colagrossi & Colicchio 2007). For
the problems presented in this paper, a good estimation of the maximum flow
velocity is twice the velocity of the bore front (therefore c0 was set equal to twenty
times the velocity of the bore front). In practical computations, this choice ensures
that the density fluctuations will remain lower than 10−2ρ0.

The use of an explicit formula for the pressure avoids the need to solve the Poisson
equation, and therefore increases the efficiency and reduces the memory requirements
of the method. To obtain a more regular pressure distribution, Colagrossi & Landrini
(2003) proposed a periodical ‘re-initialization’ of the density field, based on a moving-
least-squares interpolation (see e.g. Belytschko et al. 1998), that is, periodically ρj is
evaluated directly from the mass distribution of the fluid particles using the SPH
interpolation strategy. This filters out unphysical high-frequency pressure oscillations.

The implementation of equations (2.5) leads to an unstable solution. To overcome
this problem, equations (2.5b) and (2.5c) have been modified. In particular, the fluid
momentum equation has been changed in

dvi

dt
= − 1

ρi

N∑
j=1

(pi + pj + Πij )∇i Wε(xi − xj ) dVj + g (2.7)

Πij being an artificial stress term between the ith and the j th particles chosen here
in the form

Πij = −αερjρi

ci + cj

ρi + ρj

min[(ui − uj ) · (xi − xj ) ; 0]

|xi − xj |2 + 0.01ε2
, (2.8)

as suggested by Monaghan (1985). The parameter α must be suitably chosen for a
stable and accurate solution. In our simulations, its influence has been checked in
the range α ∈ [0.005–0.06]. The use of Πij corresponds to an equivalent kinematic
viscosity of the form 15/112 αcε (Monaghan 2005). Because ε reduces refining the
discretization, Πij also decreases with it.

The equation governing the motion of the particles has been modified as follows:

dxi

dt
= vi + 0.5

N∑
j=1

vj − vi

(ρi + ρj )
Wε(xi − xj ) dmj, (2.9)

with the additional term aimed to weakly average the velocity field around the
considered particle. This correction reduces the particle disorder and weakens the
oscillations of the velocity field caused by the weak compressibility of the liquid (see
e.g. Monaghan 2005). The evolution equations so obtained can be stepped forward in
time by any ODE integrator. In the present implementation, a second-order predictor–
corrector scheme was adopted with a dynamic choice of the time step δt according to
stability constraints related to (i) the local speed of sound and (ii) the local value of
the particle acceleration. The related stability requirements are stringent (a negative
aspect of the weakly compressible SPH formulation) and can easily lead locally to a
very small time step. To alleviate the problem, an individual time-stepping algorithm
(Hernquist & Katz 1989) has been adopted, which allows the particles to evolve
hierarchically according to their own time step.

Although the particle evolution equations are coupled, their right-hand sides can
be evaluated independently and without the solution of an algebraic system (required
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in most of the discretization methods for PDEs). Therefore, the required memory is
just proportional to the number N of particles, and the algorithm is well suited for
use on parallel computers.

In the SPH method, the characteristic discretization parameters are: (i) the ratio
ε/L, where L is a typical length scale of the problem, and (ii) the parameter ε which
is related to the number of particles N within the interaction radius 3ε (i.e. the circle
in figure 1). Roughly speaking, in two-dimensional problems, the parameter 3ε

√
π/N

is the equivalent of the grid size 
x in mesh-based methods. For the problems
studied in the following, we considered the mean water depth h0 as the reference
length scale. Further, N � 50 and particle location on a Cartesian uniform lattice (i.e.
ε/
x � 1.33) were used for the initial configuration in all the simulations. Where not
explicitly stated in the paper, an initial spatial resolution 
x = h0/50 was adopted (i.e.
ε/h0 � 0.027), while the total number of particles depends on the considered case, i.e.
on the total length of the domain. In most of the present simulations, a domain length
of 60 h0 was assumed, corresponding to about 150 000 particles. All the computations
presented have been performed on Pentium III 700 MHz processors. With this CPU,
the SPH algorithm used requires a time cost of 50 µs for each particle and each time
iteration. The simulations presented here required 24–48 h CPU-time using a memory
space smaller than 50 MBytes (double-precision variables have been used).

Since a kernel with a compact support has been adopted (see expression (2.3)), an
efficient code can be obtained with an ad hoc neighbour search strategy. The latter is
important for reducing the CPU time costs of an SPH solver since distances between
neighbour particles must be calculated for each time step. Here a linked-lists algorithm
has been implemented (see e.g. Allen & Tildesley 1987), which at present requires a
number of operations only proportional to N .

The numerical method described above has been applied to a large variety of
violent free-surface flows and compared with solutions by other solvers, dam-break
flows: Colicchio et al. (2002), Colagrossi & Landrini (2003); sloshing flows: Landrini
et al. (2003); jet entry flows: Trivellato, Bertolazzi & Colagrossi (2004); ship flows:
Tulin & Landrini (2000), Landrini, Colagrossi & Tulin (2001); wave breaking process:
Colagrossi, Landrini & Tulin (2000).

3. Breaking bores
We first study the genesis and propagation of breaking bores over water with

uniform depth. The model problem selected is sketched in figure 2: the flow starts
with a semi-infinite layer of fluid, depth h0, forced into motion by a vertical piston,
moving from left to right with constant speed U . The actual numerical simulations
have been performed with h0 = 0.1 m and g = 9.81 m s−2. In the discussion and in
the figures, non-dimensional quantities are used by taking h0 and

√
h0/g as length

and time scales, respectively. With these scales, the piston speed U and the celerity
of the bore front u are made non-dimensional, respectively, as FP = U/

√
gh0 and

F0 = u/
√

gh0.
At the beginning of the simulation, a smooth ramp-function for the piston velocity

has been used to prevent formation of a jet at the solid boundary, which is irrelevant
for our purposes.

As time passes, for small velocity of the piston, a non-breaking undular bore
develops, reconciling the initial unperturbed water level h0 with the higher one h1

behind it. This case can be accurately described by boundary integral equation
methods. In Greenhow & Lin (1985), FP ∼ 0.35 is given as threshold for the leading
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Figure 2. Sketches of the bore generated by a piston moving horizontally with velocity U in
a layer of fluid with initial depth h0. (a) Generation of a non-breaking undular bore, FP = 0.3.
(b) Generation of a fully developed breaking bore, FP = 0.8. Contour levels are representative
of the fluid horizontal velocity vx .

FP h1/h0 F0 uSPH/uth

0.95 2.12 1.82 1.06
0.90 2.1 1.80 1.00
0.80 1.9 1.66 0.94
0.70 1.8 1.59 1.00
0.60 1.7 1.52 0.98
0.50 1.5 1.37 1.02

Table 1. Comparison between the computed velocity, uSPH, of the bore front and the
theoretical value, uth, predicted by using global mass and momentum conservations, cf.
analytical solution (3.2) for different piston speeds. Main parameters are defined in figure 2.

crest of the undular bore to break (cf. figure 5.4 in Greenhow & Lin 1985). Increasing
the velocity of the piston, the undulations disappear and only fully developed breaking
bores are observed. This result is consistent with the experiments by Miller (1968),
who fixed the transition between undular non-breaking bores and fully developed
bores in the range 1.35 � F0 � 1.55, with u the bore front velocity (cf. analytical
solution (3.2) and table 1).

In the following, we are interested in describing surface breaking and we consider
the range 0.5 � FP � 0.95, for which the wavefront steepens rapidly, overturns, and
evolves into a breaking bore. Actually, the transition from undular-breaking bores
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Figure 3. Breaking bore for piston-based Froude number FP = 0.8: time history of the average
bore-front position xB . The SPH predictions using two different values of the parameter β
(�, β = 0.22; �, β = 0.55) are compared with the theoretical evolution (—) of the bore-front
obtained by integrating expression (3.2). x0 corresponds to xB at the initial time t0. Main
parameters are defined in figure 2.

to fully developed breaking bores is gradual (Teles da Silva & Peregrine 1990;
Landrini & Tyvand 2001) and, in our simulations, for FP = 0.5 we still observe a train
of smooth long undulations downstream of the breaking front.

For the fully developed bores and for a given piston-based Froude number FP , by
using mass and momentum conservation, we can evaluate the ratio between the two
mean water levels h1 and h0 as(

h1

h0

− 1

)√
(1 + h1/h0)

2h1/h0

= FP (3.1)

(see i.e. Stoker 1957). Then the dimensionless velocity of the bore can be related to
the water depths,

F 2
0 =

(
uth√
gh0

)2

=
1

2

(
h1

h0

)(
1 +

h1

h0

)
. (3.2)

During all the simulations the front of the bore is not sharply defined and this has
been also observed in laboratory experiments. After an initial transient the averaged
velocity of the front, estimated as the ratio between the average instantaneous bore
position, xB , and the time interval used in the simulation, becomes constant. The
related numerical xB time evolution is presented in figure 3 for the case with FP = 0.8.
Here, xB has been defined as the vertical section where the water depth is equal to
h0 + β (h1 − h0), with β ∈ (0.2, 0.8). The results show a limited influence of β and
compare well with the theoretical xB evolution obtained by integrating expression
(3.2).

The data from our gridless simulations and the theoretical predictions from formula
(3.2) are given in table 1.

The agreement is fair within an error within a few per cent. It is perhaps surprising
that such good agreement is found with an Euler computation for a flow which is
considered highly dissipative. However, we must note that the numerical solution
involves both main mechanisms for energy dissipation: (i) molecular viscosity and (ii)
conversion to small-scale random eddy like motion. In fact, the artificial stress used
numerically behaves as a viscous stress. Further, during the simulation some of the
energy in the horizontal motion is lost through the conversion process.
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Figure 4. Initial evolution of the free-surface motion induced by a vertical piston in steady
forward motion, piston-based Froude number FP = 0.8. The coordinate system moves with the
piston. The free-surface profiles obtained by a BEM solver (solid lines) are superimposed onto
the SPH solution. Contour levels are representative of the vertical heights y(t=0) at initial time
t =0 s of the particles simulated by the SPH.

The model problem under analysis is the same as in the experiments described in
Miller (1968). Miller (see figure 4 in his paper) observed a larger dispersion of the
measured bore velocity ufront around the theoretical prediction, with the scattering of
measured data increasing rapidly for bores with h1/h0 > 2. He ascribed this difficulty
to the turbulence and aeration of the front, preventing the accurate determination of
the bore velocities.

3.1. Pre-breaking stage

A typical initial evolution is shown in figure 4 for FP =0.8. The particles used in the
simulation are plotted together with the free-surface profiles obtained by a boundary-
element method (BEM), and are marked according to their initial distance from the
bottom.

After the piling up of the water against the piston, a long wave starts to propagate
with velocity of the order of

√
gh0 and soon steepens, overturns and breaks with

a large plunging jet impacting onto the underlying free surface. The breaking of
the free surface prevents the BEM from further following the evolution of the flow
field.

The comparison between the two solution methods is satisfactory for all the
configurations reported; an enlarged view of the jet region highlights some local
differences, as shown in figure 5 for the most critical configuration. The SPH free
surface is characterized by a more irregular behaviour. This is because the motion
of the fluid particles is followed without any specific smoothing technique whereas in
the BEM solver regridding is used during the simulation. A finer SPH description of
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Figure 5. Enlarged view of the plunging jet at the last time instant shown in figure 4. The
BEM free-surface profile (dashed line) is superimposed onto the SPH solution given in terms
of the contours of the (a) velocity and (b) acceleration fields. Main parameters are defined in
figure 2.

small scales within the jet can be obtained by varying ε spatially, as discussed in the
following sections.

3.2. Impact and ricochet of the plunging jet

The forced breaking bore features repeated plunging events. This occurs in shallow
water as well as in deep water. A detailed description of the first plunging event in
the deep-water case is given in figure 6 for FP = 0.8.

In particular, we have chosen the reference configuration in the top-left-plot and
assumed that the jet is formed by the particles, marked by black dots, within the area
delimited by the free surface and the vertical line tangent to the nascent loop beneath
the jet (see enlarged view). In the following plots, the motion of these particles is
tracked by means of the Lagrangian character of the SPH. During the free-falling
phase, the jet is stretched and narrows because of mass conservation. At the impact, the
jet-particles flow into two separated streams (figure 6c). One is deflected inside
the loop, and the other one contributes to the formation of the splash-up. Initially,
the plunger is fed only by fresh particles which undergo the same evolution as the
black particles. Later on, the particles earlier entrapped by the clockwise structure,
complete one revolution and (partly) re-contribute to the impinging jet (figure 6d , e),
implying a strong mechanical mixing. The particles entering the splash-up evolve into
a new plunger and are again split into a portion captured by a second clockwise
structure and a remaining one forming another splash-up (see figure 6c).

A portion of the particles originally in the first plunger ride on the moving front
of the propagating wave, while the others are captured by the cavities and effectively
mixed with other portions of fluid. In the following cycles, all the tracked particles
are captured by the rotating structures and fresher particles feed the bore front.

A more quantitative analysis is presented in the two bottom plots in terms of the
velocity components of the centre of mass of the jet particles

(Vc,x, Vc,y) =

∫
jet

ρ(vx, vy) dA

/∫
jet

ρ dA. (3.3)
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Figure 6. Breaking bore for piston based Froude number FP = 0.8: evolution of the particles
forming the initial jet (marked by black symbols). Time increases from (a) to (h). Contour levels
are representative of the vertical heights y(τ=5.31) at the non-dimensional time τ = 5.31 of the
particles simulated by the SPH. The two bottom diagrams show the time evolution of the (i)
horizontal and (j ) vertical components of the centre of mass of the plunging-jet particles. The
dot-dashed and the dashed horizontal lines in (i) indicate the piston and bore-front horizontal
velocities, respectively. The dot-dashed line in (j ) represents the vertical-velocity free-fall law.
Main parameters are defined in figure 2.

From the results, the first part of the jet evolution is characterized by a free-fall
stage accompanied by an almost steady translation in the horizontal direction. The
instant of the impact is evidenced by sharp changes of the velocity components.
Vc,x drops down to half of its initial value when the jet splits into two portions
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with backward and forward motion. After some decreasing oscillations, due to both
the orbital motion and the multiple splash-up, Vc,x attains the uniform velocity of
the moving piston. Vc,y bounces up, changing in sign, because both fluid portions
are moving upwards, and then oscillates consistently with the orbital motion of the
particles entrapped in the cavities. Eventually, Vc,y attains an almost zero value, with
small-amplitude oscillations related to the orbital motion inside the vortical structures
rotating in an uncorrelated way.

For problems involving multiple breaking, an important numerical issue is the
ability to reproduce accurately the penetration of the plunging jets. In this context,
experimental data on the flow field at the plunge point can be useful for a fuller
validation of the numerical simulations, as well as for a deeper understanding of the
fluid dynamics involved. Comparisons with the potential mixed finite-element model
by Trivellato et al. (2004) in the case of entry problems with jets of various shapes
and intensities proved that the SPH artificial viscous stress Πij plays a negligible role
in the jet penetration dynamics. Surface tension, rounding the developing jet, could
play a role and should be examined in future.

The estimation of fluid invariants (mass, momentum, energy, etc.) can be used as a
measure of the global accuracy of the method. Mass and momentum (both linear and
angular) are conserved by the SPH solver. The energy dissipated during a numerical
simulation is investigated in the following for the case with a piston Froude number
equal to FP =0.8.

Generally speaking, the total energy Et of the fluid is characterized by the
mechanical energy Em (sum of kinetic, Ek , and potential, Ep , terms) and by the
internal energy Eu. For the breaking bore problem analysed here, the total energy Et

of the fluid must be equal to the work done by the moving piston on the fluid Wp , i.e.

Et = Em + Eu ≡ Wp. (3.4)

The time evolution equations of the energy terms Em and Eu, for an inviscid
compressible flow, are given by:

ρ
dEm

dt
= −v · ∇p + g · v, ρ

dEu

dt
= −p div(v). (3.5)

which become:[
ρ

dEm

dt

]
i

= −vi ·
∑

j

(pi + pj + Πij )∇iWε(xi − xj ) dVj + g · vi (3.6a)

[
ρ

dEu

dt

]
i

= −
∑

j

(
pi +

1

2
Πij

)
(vj − vi) · ∇iWε(xi − xj ) dVj (3.6b)

for the generic ith particle. Here the artificial viscous stress Πij (see definition (2.8)) is
taken into account. Following a procedure similar to that by Benz (1990) it is possible
to demonstrate that the discrete equations (3.6) lead to conserving exactly the total
energy. Therefore they allow us to evaluate the work Wp through the link (3.4).

A crucial aspect is to investigate the time evolution of the energy loss Em − Wp =
−Eu. Sources of Eu are related both to the artificial viscous stress Πij and to the
weakly compressibility assumption. Concerning the latter, in the SPH, the speed of
sound adopted is smaller than in reality, and so the numerical divergence of the
velocity field can be much larger. For these reasons, Eu does not coincide with the
physical internal energy, but can be used to evaluate the numerical dissipation for a
given spatial resolution.
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Figure 7. Breaking bore for piston-based Froude number FP =0.8: time evolution of the
SPH energy loss Em − Wp , where Em is the mechanical energy of the fluid and Wp is the work
done by the moving piston. Em − Wp is made non-dimensional by the equivalent energy loss,
EB , evaluated between times ti and tf for a theoretical bore modelled as a shock between
the two water levels. The numerical results have been obtained with three different spatial
resolutions: ε/h0 = 0.054, 0.027, 0.017. Main parameters are defined in figure 2.

In figure 7, the SPH (Em − Wp) has been compared with the theoretical energy loss

EB(tf ) = −ρ g h0 u
(h1 − h0)

3

4 h1 h0

(tf − ti), (3.7)

between times ti and tf when the bore front is considered as a discontinuity moving
with velocity u between the water levels h0 and h1 (see e.g. Stoker 1957). Here,
ti � 6

√
h0/g is the time when the first plunger impacts the underlying water and

tf � 33
√

h0/g is the final time of the simulation. The results show convergence to the
theoretical energy loss which is zero in the pre-breaking stage [0 . . . ti) and given by
formula (3.7) in the post-breaking stage. During the pre-breaking phase, the energy
loss is dominated mainly by the artificial viscous stress Πij and the internal energy
Eu converges to zero linearly with the smoothing length ε (see e.g. Colagrossi 2005).
During the post-breaking stage, the time decay of the energy loss is governed by the
transfer of energy to small scale random eddy like motion.

3.3. Splash-up cycles and formation of vortical structures

The post-breaking evolution for FP = 0.8 is described in figure 8 starting from the
breaking of the plunging jet (figure 8a). The impact causes the closure of a cavity and
leads to a clockwise-rotating structure (figure 8b). A splash-up (I ) is formed partially
fed by the impinging jet, growing in the form of a mushroom-like upwelling structure
(figure 8c). A second plunging event is caused, giving rise to a second splash-up (II )
and to another clockwise rotating structure, (figure 8d).

The formation of the mushroom-like structure and the growth of the backward
jet are essentially related to the gravitational collapse of the mass of water which,
deflected upwards by the impact, eventually falls down. The further evolution of the
backward-facing jet, impacting with the free surface, results in a counterclockwise
vortex with a strength similar to that of the first clockwise structure. This fact and
their closeness cause the two structures to behave like a dipole. Further, they are
sufficiently far from other vortical structures and strong enough to evolve as an
isolated dipole in an infinite fluid, i.e. they fall down toward the sea floor (figure 8e).
Eventually, they are affected by the bottom presence and separate (figure 8f, g). Two
main aspects are necessary for such evolution: (a) the strength of the backward jet,
responsible for the counterclockwise vortex, must be similar to the strength of the
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Figure 8. Breaking bore for piston-based Froude number FP = 0.8: further evolution of
the case presented in figure 4 as predicted by the SPH solver. (a) to (h) correspond to
non-dimensional time instants t(g/h0)

1/2 = 5.94, 7.92, 10.2, 11.4, 13.2, 14.6, 16.0 and 18.7,
respectively. The main features observed are as follows. (a) Initial impact of the plunging jet.
(b) Closure of a cavity and related clockwise rotating structure. (c) Mushroom-like upwelling
structure. (d) Second plunging event and related clockwise rotating structure. (e) Dipole-like
structure at the sea bed. (f –h) Breaking of the first and third dipole-like structures owing to
the interaction with the bottom. Contour levels are representative of the vertical heights y(t=0)

at initial time t = 0 s. of the particles simulated by the SPH. Main parameters are defined in
figure 2.

earlier forward jet, causing the clockwise vortex, and (b) the two (backward and
forward) jets must be relatively energetic.

The weakness of the forward jet connected with the splash-up II delays the
formation of a subsequent backward flow and of the related counterclockwise
structure. The latter pairs with the earlier clockwise vortex leading to a dipole-like
structure that falls down (figure 8h). Later, a third splash-up (III ) originates with
similar strength to the splash-up I . The subsequent dipole-like structure is quite strong
and falls down earlier than the corresponding structure created by the splash-up II .

The described interaction phenomena resemble modes A and B observed
experimentally by Bonmarin (1989) for breaking surface waves in deep water. Mode A
is connected with the weak impact of water against the underlying free surface
resulting in shearing layers above the vortical structures. Mode B is associated with
more intense impacts leading to the formation of pronounced backward-facing jets.
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Figure 9. Enlarged view of the velocity field during SPH splash-up phenomena with features
similar, respectively, to the (a) mode A and (b) mode B interactions described by Bonmarin
(1989). Solid arrowed lines give an indication of the overall direction of motion and the
contour levels represent the vorticity field. The phenomena shown correspond, respectively, to
the splash-up events II and I described figure 8. Main parameters are defined in figure 2.

Examples of Mode A and Mode B interactions predicted by the SPH simulations are
given in figure 9. They correspond, respectively, to the splashe-ups II and I described
above in the text.

The genesis of any vortical region is related to a folding over of the surface which
creates a doubly connected region. This aspect is crucial for the generation of vorticity
and circulation (see i.e. Hornung, Willert & Turner 1995).

The rate of such formation is a measure of the flow-field unsteadiness. Here, the
latter has been investigated numerically in terms of the frequency of creation of the
forward splashes. As an example, the history of the vortical structures generated in
the case FP = 0.8 is reported in figure 10. The results indicate a non-zero and negative
net vorticity in the fluid domain. This is consistent with the experimental observations
by Miller (1976). The occurrence of non-zero net vorticity has an inviscid reason, that
is cavity closure due to breaking, and is not in contrast with Kelvin’s theorem for the
circulation. A theoretical discussion about the vorticity generation in the context of
wave breaking can be found, for instance, in Hornung et al. (1995).

In figure 10, the rotational areas are identified by the dashed lines and are numbered
in order of appearance. During their evolution the vortical structures can tend either
to pair or to break into multiple vortices. The latter circumstance occurs for the
vortical structures 13 and 14 in figure 10(f ).

In the Froude-number range considered, the first backward plunging jet is always
rather strong. It impacts with the free surface and evolves according to the Bonmarin’s
mode B interaction. From the fragmented free surface, two vortical structures of
opposite sign are created and shed. These will pair with each other and start to fall
down. The next flow evolution is complex and characterized by the occurrence of
additional mode B interactions and of less intense Mode A interactions. In the latter
case, the vortices stay near the free surface longer. As the piston speed decreases,
the intensity of the splashes reduces and the number of Mode A interactions
increases with respect to that of Mode B interactions. This leads to a series of vortices
interacting with each other and forming a sort of chain in proximity of the free surface.
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Figure 10. Breaking bore for piston-based Froude number FP = 0.8: tracking of vortical
structures generated during the splash-up cycles. They are highlighted through the vorticity
contour levels and are numbered in order of appearance. Time increases from (a) to (f ) with
time instants t(g/h0)

1/2 = 12.9, 16.0, 20.7, 24.5, 29.9, 31.5. Main parameters are defined in
figure 2.

In the following, the shedding phenomenon is investigated by considering different
speeds of the bore front.

If NV (t; t0) is the number of vortical structures generated in a time interval (t − t0),
the averaged frequency of the shedding of vortices with the same sign results

fs(t; t0) =
NV (t; t0)/2

(t − t0)
. (3.8)

Here the initial time t0 was chosen as the instant when the first plunging jet hits the
free surface. If we takes the ratio (h1 − h0)/u as the characteristic time scale for the
bore evolution, a Strouhal number

St = fs

h1 − h0

u
= fs

√
h0

g

/(
F0

h1/h0 − 1

)
, (3.9)

related to the shedding phenomenon can be introduced. For a given time interval
[t0, t], as F0 decreases, the size of the generated vortical structures reduces and their
number increases. This implies that fs increases (see figure 11) and the trend is the
same for F0/(h1/h0 −1), so that St remains almost constant. This implies a correlation
between the frequency of vortex creation and the strength of the bore. The value of
St is about 0.22, which is almost the same as for the Strouhal number related to an
analogous circular cylinder with a diameter D = h1 − h0, moving at a speed U∞ = u

(cf. figure 12) and with Reynolds number in the subcritical regime (see e.g. Goldstein
1965).
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Figure 11. Time evolution of the number of vortices Nv generated during the bore propagation
for different piston velocities. (a) �, FP =0.5; �, FP = 0.6. (b) �, FP =0.7; �, FP =0.8; �,
FP = 0.9. Main parameters are defined in figure 2.
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Figure 12. Definition of the Strouhal number. (a) Bore problem. u is the upstream current
velocity seen by the front of the bore. h0 and h1 are the upstream and downstream water
depths, respectively. (b) Analogous circular cylinder problem. U∞ is the current velocity seen
by the cylinder. D is the cylinder diameter. fs is the frequency of the shedding of vortices with
the same sign.

The results of this simplified analysis in terms of the main parameters involved are
summarized in table 2.

3.4. SPH simulation with local refinement

A lower value of FP leads to a smaller size of the initial plunging jet. Therefore a
spatial discretization with a sufficiently small dx/h0 is needed to capture the fluid
structures originated during the splash-up phases. For instance, to ensure almost the
same plunging jet resolution considered for the piston-based Froude number FP =0.8,
in the case with FP = 0.5 the number of particles has to pass from 80 000 to at least
half million. This leads to very demanding CPU-time requirements. Therefore the
cases with the smallest Froude numbers, FP = 0.5 and 0.6, have been analysed by
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FP F0 2fs

√
h0/g F0/(h1/h0 − 1) St

0.90 1.80 0.36 1.64 0.22
0.80 1.66 0.40 1.84 0.22
0.70 1.59 0.51 1.99 0.26
0.60 1.52 0.40 2.17 0.19
0.50 1.37 0.61 2.74 0.22

Table 2. Vortex creation during the splash-up cycles for different piston velocities. fs , St
represent, respectively, the averaged values for the dimensionless frequency of shedding and
for the Strouhal number defined in expressions (3.8) and (3.9). The average is taken during
the last 10

√
h0/g s of the bore propagation. Main parameters are defined in figure 12.

5 6 7

0

0.2

0.4

0.6

0.8

y
—
h0

x/h0

dx/h0 = 0.0133
62 neighbours

dx/h0 = 0.0266
15 neighbours

ε/h0 = 0.0210

Figure 13. Non-uniform distribution of the SPH particles used to capture the first plunging
jet induced by the piston-based Froude number FP =0.5. Close to the free surface, the particle
distribution is four times denser than that used near the bottom. All the particles have the
same ε/h0 = 0.0210, as a consequence the particles close to the free surface are characterized
by a larger number of neighbours. The numerical parameters are defined in § 2.

introducing a local refinement only near the free surface to limit the required memory
space and CPU time.

To avoid numerical complexities, ε has been kept constant (see Hernquist & Katz
1989; Nelson & Papaloizou 1994), therefore the smaller particles in proximity of the
free surface have a large number of neighbours N > 50, while the neighbours of
the particles close to the bottom reduce to N = 15. As an example, figure 13 shows
the particle distribution used for FP = 0.5. The SPH simulations performed with the
described strategy are characterized by numerical noise due to coarser particle
distributions in some fluid areas. In the present case, this occurs in the region
beneath the bore front. Despite this, the numerical results are still reliable for a
qualitative analysis of the breaking bore propagation.

4. Bores on beaches
The problem of the run-up of waves on sloping beaches is widely treated because

of its practical importance, for example in the context of coastal erosion, flooding
and tsunamis. Here we present some results for fully developed bores climbing up
beaches with constant slope α. A sketch of the model problem with the relevant
parameters is given in figure 14 where particles are marked according to their initial
submergence. Following Miller (1968), the simulation starts with a piston which
reaches its final velocity after a smooth acceleration. The piston maintains this speed



Gridless simulations of splashing processes and near-shore bore propagation 203

y

x

Shoreline

3h0
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Figure 14. Numerical simulation of a breaking bore climbing an inclined beach. The mean
water level is h0 = 0.1 m. The piston starts to move at a distance 23h0 from the beach and
stops at 3h0 from it. Main parameters are defined.
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Figure 15. Breaking bore climbing an inclined beach: velocity (dashed line) law imposed to
the piston and corresponding position (solid line) as a function of time. The piston starts to
move with a smooth acceleration and reaches a final velocity which is maintained constant
for about 25

√
h0/g s. During this time interval, a fully developed breaking bore is formed.

At a distance 3h0, far from the beach, the piston stops its forward motion with a smooth
deceleration, while the bore propagates shoreward. Main parameters are defined in figure 14.

for a certain time interval and then stops its forward motion (see figure 15). This
leaves a fully developed breaking bore propagating shoreward, through water with
decreasing depth, collapsing down after reaching the shoreline, and eventually entering
a running-up mode where splashing at the front is not detected anymore. As observed
by Yeh, Ghazali & Marton (1989), the evolution of an undular bore would be rather
different, with the bore front steepening, overturning and plunging onto the dry beach.
This case is not studied here.

The description of the region where the water front meets the beach is numerically
challenging because of the low density of involved particles. This leads to an inevitable
loss of accuracy. However, such a local deficiency has a limited role for the main flow
features which are dominated by the incoming finite-water wave.

The evolution for a piston-based Froude number FP = 0.8 and a beach with constant
slope α = 3◦ is shown in figure 16. In this case, h0 is the uniform depth before the
sudden change in the slope. In figure 16(a), the bore front propagates along an
essentially unperturbed layer of water with decreasing depth. The typical character
of the bore, i.e. a steep jump reconciling water of different depths, is preserved in
figures 16(b) and 16(c), where the bore approaches the shoreline.

Ho & Meyer (1962) analysed theoretically the evolution of a fully developed bore
approaching the shoreline. In their shallow-water theory, the bore is modelled as a
sharp discontinuity in height and velocity, and the shoreline is a singular point of
the solution. Within this framework, the bore height decreases as the square root of
the distance from the shoreline, ultimately disappearing at the singular point. Such



204 M. Landrini, A. Colagrossi, M. Greco and M. P. Tulin

(a)

–0.2

0

0.2

–0.2

0

0.2

–0.2

0

0.2

–0.2

0

0.2

–0.2

0

0.2

–0.1 –0.08 –0.06 –0.04 –0.02 –0.01

Shoreline

y(t = 0)

(b)

(c)

(d)

(e)

0.5 1.0 1.5 2.0

0

Figure 16. Breaking bore climbing an inclined beach: run-up of the bore generated by a
piston initially moving with a Froude number FP = 0.8, along a beach with constant slope
α = 3◦. The crosses mark the shoreline and the contour levels are representative of the vertical
heights y(t=0) at initial time t = 0 s of the particles simulated by the SPH. The evolution shows
an important fluid mixing with initially free-surface particles migrating toward the beach. The
transport of surface water shorewards, and advected to the bed by vortex pairs, is nicely
shown by these results. (a) to (e) correspond to time instants t

√
g/h0 = 17, 19.9, 22.4, 25, 27.7,

respectively. In the numerical simulation h0 = 0.1 was used. Main parameters are defined in
figure 14.
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Figure 17. Breaking bore climbing an inclined beach: snapshot of the bore front at
t
√

g/h0 = 18.66 for piston-based Froude number FP = 0.8 and decreasing slope, α, of the beach.
(a) α =9◦, (b) α = 6◦, (c) α = 3◦. The three simulations have been stopped at the same time: the
comparison shows the waves at similar x-coordinate positions. For α = 9◦, the bore reached
the shoreline. In the numerical simulation, h0 = 0.1 was used. Contour levels are representative
of the vertical heights y(t=0) at initial time t =0 s of the particles simulated by the SPH. Main
parameters are defined in figure 14.

‘bore collapse’ was observed numerically by Keller, Levine & Witham (1960) and
agrees qualitatively with experiments (Miller 1968; Yeh et al. 1989) and with our
numerical observations.

In the later evolution, breaking seems to cease (figure 16e). A more detailed analysis
reveals a gradual reduction of the steepness of the bore front, which at the shoreline
reduces to a fluid wedge propagating shoreward. Further, from the shoreline on, the
flow resembles that generated after a dam break. In more detail, shallow-water theory
(Stoker 1957), experiments, and our numerical simulations (not reported here) show
the water front propagating smoothly along the beach without breaking.

Figure 17 presents the water configurations and the flow fields for three slopes
of the beach, at the same time instant from the starting of the piston motion. As
α increases, the bore becomes closer to the shoreline. For the steepest beach, it has
already reached the shoreline and is almost ready to collapse, as described above. In
all cases, the front of the bore is located practically at the same abscissa, showing the
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Figure 18. Breaking bore climbing an inclined beach: evolution of the bore front while
going through the shoreline for a piston-based Froude number FP = 0.8. (a) α = 3◦,
tcross

√
g/h0 = 26.13, 
t

√
g/h0 = 0.53. (b) α = 9◦, tcross

√
g/h0 = 18.66, 
t

√
g/h0 = 0.53. Contour

levels are representative of the vertical heights y(t=0) at initial time t = 0 s. of the particles
simulated by the SPH. Main parameters are defined in figure 14.

limited role of the beach slope in altering the bore celerity. It is remarkable that the
structures of the bore front remain similar despite the different beach angles.

Figure 18 shows the details of the bore-front evolution while crossing the shoreline,
for α = 3◦ and 9◦. In both cases, the evolution of the field shade levels highlights the
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Figure 19. Breaking bore climbing an inclined beach: positions of the vertical fixed sections
where velocity vector profiles are calculated during the SPH simulation (solid lines).

migration rightwards of the initially near free-surface particles. It shows also their
migration toward the inclined sea floor as an interesting feature for the flow up a
beach.

For the largest slope, the bore front reaches the shoreline in a rather violent way:
the amount of water involved is greater and the vortical structures behind the bore
front are bigger and more intense than for smaller α. Once the bore has collapsed
against the shoreline, the vortices already shed are convected forward by the main
flow and go beyond the shoreline. They could be responsible for beach erosion which
is quite relevant in practice. For α =3◦, the beach is almost three times longer than
for α = 9◦. As a result, the mechanical energy of the bore is dissipated in a larger sea
bottom length and the flux of the fluid momentum at the shoreline is smaller than for
α = 9◦. In particular, the layer of fluid at the shoreline is thinner and the convected
vortical structures are more stretched and smaller.

4.1. Bore approaching the beach: velocity profiles

The velocity field associated with the evolution of a bore approaching a straight
inclined beach has been studied by estimating the velocity vector profiles at the
twelve fixed vertical sections shown in figure 19. The two most upstream sections
are located before the beach, where the water depth is constant. The others are in the
beach region with the last two beyond the shoreline and therefore wetted only once
the front of the bore has passed their location.

In the following, the case with a beach slope α = 3◦ is considered. The velocity
profiles, calculated by using the interpolation integral introduced in § 2, are given in
figure 20 at different time instants. At the first time instant shown, the front of the
bore is between the two most advanced sections. Owing to the passage of the bore
front propagating with a velocity u =1.66

√
gh0, near the free surface the velocity

profile recorded along section 1 is characterized by high horizontal values, while close
to the bottom these are similar to the piston velocity U =0.8

√
gh0. In figure 20(b), the

bore front has reached section 2. The velocity profile here is similar to that observed
at the previous time instant along section 1. At this stage, a dipole structure is visible
near the sea bottom. As time goes on, the two vortical structures move in opposite
direction along the seabed. When the clockwise vortex reaches section 1 the resulting
velocity profile is characterized by large gradients near the bottom (see figure 20d).
In figure 20(e) the core of the counterclockwise vortex is almost at section 2. Also,
this vortex induces a large velocity gradient, but with opposite sign with respect to
the clockwise structure. In more detail, the counterclockwise vortical structures are
responsible for high tangential velocities on the seabed.

In the present simulations, the sea-floor boundary layer is not modelled; however,
the results suggest the occurrence of high shear stresses at the bottom. At the
sections not influenced by the front of the bore and by the vortical structures, the
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Figure 20. Breaking bore climbing an inclined beach: vorticity contour levels in the flow field
and vector velocity profiles at the fixed vertical sections defined in figure 19. U = 0.8

√
gh0

and α = 3◦. The small dots are the particles which belong to the free surface at initial time
t = 0. These particles have been trapped into the fluid during the breaking processes. The time
increases from (a) to (e), t(g/h0)

1/2 = 14.9, 16.8, 19.8, 21.8, 27.7.

velocity profiles appear more regular, with almost zero vertical component and with
a horizontal value close to the piston velocity (see e.g. along section 2 in snapshot a

of the figure). In the snapshots (d, e) of figure 20, the bore front propagates along the
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Figure 21. Breaking bore climbing an inclined beach: time histories of the sea-floor tangential
velocity, uτ , at the fixed sections defined in figure 19 (the numbers are consistent with those of
the twelve probes). U = 0.8

√
gh0 and α = 3◦.

inclined beach and the vortical structures interact with the local sea floor soon after
they have been created. As a consequence, close to the bottom the velocity profiles are
characterized by large horizontal and vertical velocity gradients. When the bore front
reaches the shoreline a high-speed tongue of fluid is created and starts to rise along
the initially dry beach. At this stage no additional vortical structures are generated.

Figure 21 shows the time histories of the sea-floor tangential velocities uτ at the
different vertical sections. All nine probes upstream the shoreline show large fluctu-
ations due to the interaction with the vortical structures shed from the breaking-bore
front. For almost all locations, the maximum velocity recorded exceeds the speed of the
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bore front. At sections 1 and 3, the tangential velocities even become negative owing
to the interaction with a strong vortical dipole structure. The latter is released by the
breaking-bore front during its propagation in the constant-water-depth region. This is
the first double-vortical structure generated by the breaking bore; it is characterized
by a stronger intensity with respect to the following ones. The time histories of the
tangential velocity for the first two probes fall to zero once the piston has reached
their positions during its slowdown stage.

The highest values of uτ have been recorded at the last three probes which
correspond to the shoreline area. Such values are related to the ‘bore collapse’, when
the flow locally resembles that after a dam break.

5. Discussion and summary
A numerical code to simulate flows with free-surface and breaking fragmentation

has been developed and applied to study the genesis and evolution of breaking bores
running on uniform and sloped bottoms. The solver is based on a gridless particle
method (SPH) for the Euler equations and features a Lagrangian character which
allows us to track in detail the complex dynamics of the breaking bore front.

Splash-up cycles and their link with the genesis of vortical structures downstream
of the bore are discussed in detail. The presence of vortical structures of both signs is
detected and connected with the splash-up mechanics, characterized by the formation
of mushroom-like upwelling structures with one branch folding backward and creating
circulation of opposite sign with respect to the forward plunging breaker. The SPH
predicted evolution of the bore breaking appeared very similar to the experimental
observations by Bonmarin (1989) for deep-water breaking waves.

A remarkable feature of the observed motion is the complex behaviour of the free
surface, creating holes, circulation and vorticity shed into the wakes, forming coherent
structures. These result in large-scale convection and mixing of fluids, impacts on the
bottom and scouring velocities at the sea bed.

According to the analysis, vortices with opposite sign can pair to form dipole
structures. These affect the water evolution and can interact in a complex way with
the free surface and with the sea floor. In the latter case, large stresses can be induced
at the bottom that are responsible for erosion.

The investigation is extended to the case of breaking bores climbing sloped beaches
and the mechanics of propagation through the shoreline is discussed. From the
results, the essential character of the bore which propagates through splash-up cycles
is preserved up to the shoreline. The splashing ceases when the bore reaches the dry
beach; after that the front seems to propagate smoothly and without breaking and
resembles the motion after a dam break.

The extension of the Lucy–Monaghan SPH method described here, and its intensive
application to breaking bores as well as to strong breaking flows at the bow and
stern of ships, originated in an Office of Naval Research program aimed at the
prediction of air entrainment from breaking waves produced at the bow and stern of
fine naval vessels. The ONR Program Manager was then Dr Edward Rood, jr. The
original work was carried out in The Ocean Engineering Laboratory of the University
of California at Santa Barbara and began in 1998. The Principal Investigator was
Professor Marshall P. Tulin, the Director of the OEL. We are grateful to Dr Rood
and the ONR for their support.
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In the beginning years, 1998–2000, the work involved the collaboration of INSEAN
personnel from Rome who worked at the OEL in the ONR Program, and particularly
of Dr Maurizio Landrini who is the principal architect of the detailed computational
techniques described here. This collaboration, was made possible by the management
of INSEAN, Admiral Ulderico Grazioli, and Dr Ulderico Paolo Bulgarelli. We are
very grateful to them for this, and for allowing and encouraging further work to be
carried out in Rome by INSEAN personnel after 2000, and in the preparation of this
paper after 2003, when Maurizio Landrini died in a motorcycle accident in central
Rome, a tragic loss to the field of Naval Hydrodynamics.
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